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LETTER TO THE EDITOR 

Relation between size and shape of isotropic and directed 
percolation clusters and lattice animals 

Fereydoon Family 
Physics Department, Emory University, Atlanta, GA 30322, USA 

Received 23 July 1982 

Abstract. We show that the generalised lattice animal model of Family and Coniglio 
naturally leads to a unified scaling picture for percolation and lattice animals in which the 
fugacity for occupied elements plays the dual role of a temperature-like and a field-like 
variable. Within this single-scaling-field description of percolation, there is only one 
independent exponent from which all others can be obtained. We define a new set of 
exponents a, p and y for percolation and find that they are all related to the cluster 
number exponent 0 through the relation CY = y = 1 - p  = 3 - 0, in analogy with lattice 
animals. To relate the cluster radius exponent v to the other exponents we use the 
generalised Ginzburg criteria to obtain a modified hyperscaling relation for isotropic and 
directed, percolation and lattice animals. Using this relation we find that 0 -  1 = 
q+ vi(d - 1) for directed percolation and 0 = vi(d - 1) for directed lattice animals, where 
vi1 and v I  are exponents characterising the parallel and perpendicular cluster radii respec- 
tively. Using the same approach we obtain the Stauffer relation 0-1  =dv and the 
Parisi-Sourlas relation 0 - 1 = (d - 2)v for isotropic percolation and lattice animals respec- 
tively. The above relations give the following expressions for 0 within the Flory theory: 
O(perco1ation) = (3d +2)/(d +2), O(directed percolation) = (6d + 5)/(2d +4), O(anima1s) = 
(7d -6)/(2d +4) and O(directed animals) = 9(d - 1)/(4d + 8). 

1. Introduction 

Percolation and lattice animals have been subjects of considerable recent interest 
because of their applications to many fields of physics (see e.g. Stauffer (1979) and 
Essam (1980) for recent reviews), and in particular to polymers (see e.g. Stauffer et 
a2 (1982) and Stanley et a1 (1982) for recent reviews of applications to polymers). 
More recently a special variation of these models-called directed percolation and 
directed animals-in which bonds are oriented with respect to only certain preferred 
directions has also received considerable attention (Blease 1977 a, b, c, Kertksz and 
Vicsek 1980, Reynolds 1980, Cardy and Sugar 1980, Obukhov 1980, Dhar and Barma 
1981, Essam and De’Bell 1981, Kinzel and Yeomans 1981, Klein and Kinzel 1981, 
Redner and Reynolds 1981, Wu and Stanley 1982, Redner and Yang 1982, Dhar et 
a1 1982, Day and Lubensky 1982, Lubensky and Vannimenus 1982.) The main 
reasons for the interest in the directed models is that they belong to a different 
universality class (Reynolds 1980) from isotropic models and they have application 
to a wide variety of problems, including Reggeon field theory (Cardy and Sugar 1980), 
Markov processes involving branching (Schlogl 1972), and dilute branched polymers 
in flowing solvents. 

0305-4470/82/110583 + 10$02.00 @ 1982 The Institute of Physics L583 
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In the usual approach to percolation most of the critical exponents are defined in 
the limit where the probability p approaches its critical value p c ,  i.e. an exponent o 
for a quantity X is defined by X-lp,-pl". However, in cluster models one can 
alternatively follow the convention used in the scaling theory of polymers (see de 
Gennes (1979) and references therein) of defining sets of exponents in terms of the 
cluster size N directly. The two most commonly studied cluster properties are the 
cluster radius and the cluster number CN which, as N + CO, have the scaling forms 

( - N U  (1) 

and 

c ~ - - N - ' A ~  

where Y and 8 are the cluster radius and cluster number exponentst respectively. The 
quantity A is a non-universal lattice-dependent parameter. In directed percolation 
and directed lattice animals the structure of large clusters is highly anisotropic and 
must be characterised by two length scales 511 and eL, one parallel and one perpendicular 
to the directed axis (Dhar and Barma 1981, Kinzel and Yeomans 1981). Divergence 
of these length scales is characterised by two exponents VI[ and vI respectively, which 
are defined by 

(11 - N (3) 

and 

( l - - N Y I .  (4) 

Although considerable effort has recently been spent in calculations of the above 
exponents, relatively little is known in the way of a relation between the exponents 
v and 8 for each model, particularly for directed percolation and directed animals. 
In this Letter we develop a single-scaling-field approach to percolation to obtain 
relations between the critical exponents of directed percolation and directed lattice 
animals, using scaling arguments and the Ginzburg criteria, and show that the relations 
obtained earlier by Stauffer (see e.g. Stauffer (1979) and references therein) and by 
Parisi and Sourlas (1980) for isotropic percolation and isotropic lattice animals respec- 
tively, follow directly from these arguments. In particular, the Parisi-Sourlas relation 
is obtained without reference to the Lee-Yang edge singularity. 

2. Single-scaling-field approach tor percolation: generalised lattice animals 

Recently, Family and Coniglio (1980), and Family and Reynolds (1981) have intro- 
duced a generalisation of percolation and lattice animals by characterising an arbitrary 
cluster by two independent parameters: a fugacity K for each occupied element in 
the cluster and an independent fugacity q for each perimeter site or bond. The 
generating function for generalised lattice animals is written as (Family and Coniglio 
1980) 

t In the percolation model (Stauffer 1979, Essam 1980) Y and 8 are called p and 7 respectively. 



Letter to the Editor L585 

where the perimeter polynomials are defined by 

Here C(N, N,) are the number of distinct clusters of size N and perimeter size Np. 
In analogy with the scaling relation (2) we assume that at fixed 4 in the N + C O  limit, 
DN (4 )  varies as 

D N ( 4 )  -N-""AN(4) (N + 03) (7) 

Z ( K ,  4 )  = I K , ( ~ ) - K ~ ~ ( ~ ) - ~  (8) 

so that Z ( K ,  4) as a function of K has a singular behaviour of the form 

where K,(q) = A (4)-' is the critical point, Note that A (l)-' = K ,  is the critical fugacity 
for random animals and A (4J-I = pc is the percolation threshold. In the crossover 
region (finite, small N) an extra scaling function must be introduced in (7) (see e.g. 
Stauffer 1979). 

It is not difficult to show (Family and Reynolds 1981) that N-lKc(q) -Kl - l ,  so 
that K and N are conjugate variables, and every exponent defined through relations 
such as (1)-(4) along the path N + CO is uniquely related to an exponent along the 
path K -* K,. 

Although K plays the role of a temperature-like variable, here, it may also be 
regarded as a field variable (for an application of this concept to the self-avoiding-walk 
problem see Redner and Reynolds (1981) and Havlin and Ben-Avraham (1982)) 
because it couples to every element in a cluster and plays the same thermodynamic 
role as an external ghost field for the system. This dual role played by K is an 
important property of most random cluster models in which the scaling properties 
depend only on N. Thus, in contrast to previous approaches to percolation which 
define a 'temperature' scaling power yp and a 'magnetic' scaling power yh,  in the 
present approach there exists only a single scaling power in percolation and all the 
critical exponents are related. 

In order to define the new critical exponents we assume that, in analogy with 
percolation, Z(K,  4 )  plays the role of a Gibbs potential. Thus the 'order parameter' 
M, which is obtained by differentiating the Gibbs potential with respect to the field-like 
variable, has the asymptotic form 

(9) 
The 'susceptibility' x is in turn determined by differentiating the order parameter 
with respect to the field: 

M ( K ,  4 )  - I K , ( ~ )  -~p ) -~ .  

x(K, 4)- IKc(4)-Klecq)-3. (10) 

z - IK,-KIZ-" M-IK,-Kl@ x - IK, - K 1-y. (11) 

a (4) = Y(4) = 1 - P ( 4 )  = 3 - 8 ( q )  

Recall the usual definitions of the critical exponents a, p and y :  

In comparing (B ) ,  (9) and (10) with (ll), we find 

(12) 
which coincides with the definition and the relation between a, p, y and 8 for lattice 
animals (Lubensky and Isaacson 1979) if 4 = 1. At 4c = 1 -p0 (12) defines a new set 
of exponents for percoiation clusters as a function of cluster size N, and these exponents 
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are not the same as the usual percolation exponents ap ,  pp and yp (see e.g. Stauffer 
1979 and Essam 1980), except 8(qc) = T ~ .  Although a, p, y and 8 are functions of 
4, according to universality, they cannot depend continuously on 4. In fact, renormali- 
sation group results (Family and Coniglio 1980, Harris and Lubensky 1981) imply 
that 8 is a discontinuous function of the form 

(13) 
(1 3 4  > q c )  
(qc = 1 - p c  = 1 - K,) 

so that a ( q ) ,  p(q )  and y ( q )  are also discontinuous functions of q. 

3. Ginzburg criteria and modified hyperscaling relation 

Since a,  p and y are all related to 8, if the hyperscaling relation dv = 2 -a  could be 
assumed to hold then all exponents would be related. However, it is not a priori 
obvious that hyperscaling should be valid here. Therefore, we use a generalised 
Ginzburg-type argument (see e.g. Als-Nielsen and Birgeneau 1977) to arrive at an 
extended hyperscaling relation for both isotropic and directed, percolation and lattice 
animals. 

According to the Ginzburg criteria the fluctuations of the order parameter M 
averaged over the critical volume a must be small compared with M. Thus, the 
general form of the Ginzburg criteria may be expressed as 

x < n M 2  (14) 

where ,y is the susceptibility. As pointed out above, 0 is the volume over which 
critical fluctuations are important. Since 5 is the only relevant length in the problem, 
quite generally one can assume f l - [ d + m ,  where d is the dimensionality and m is a 
constant. Even though for many systems m = 0, there are a wide variety of important 
physical systems in which m # 0 (Als-Nielsen and Birgeneau 1977). Thus, using (11) 
in (14) and letting O - [ d + m ,  the Ginzburg criteria may be written as 

(15) [ - - Y  < t - ( d + m ) u  7.0 t 

where t = /Kc-KI/Kc in the present context. In order for (15) to be fulfilled, it is 
required that 

y - (d  + m ) v  + 2 p  <o.  (16) 

The usual hyperscaling relation dv = 2 -a  for isotropic thermal critical phenomena 
can be obtained from (16) by letting m = 0, using the scaling relation 2 -a = y + 2p, 
and assuming that, since the inequality in (16) becomes an equality at the upper critical 
dimension d,, where a,  p, y and v take on their mean-field (MF) values, then the 
same relation holds for all d c d,.  Similarly, for isotropic systems, we define a modified 
hyperscaling relation 

2 - a = v ( d + m )  (17) 

by assuming an equality in (16) with an unknown parameter m to be determined 
self-consistently at d ,  with the MF value of the exponents. 
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For directed percolation and directed animals (17) is further modified, because in 
these models there are two relevant length scales, (11 and rL. This implies that the 
critical volume must generally be assumed to be of the form 

sz - ( r + ? ( y  (18) 

2-a  = (m + l ) v , , +  (d - l ) V l .  

instead of a- tdcm. Using (18) in (14) we find that for directed percolation and animals 

(19) 

4. Isotropic percolation 

A relation between 8 and Y for isotropic percolation was obtained earlier by Stauffer 
(see e.g. § 4.2 in Stauffer (1979) and references therein) through a scaling assumption 
for the percolation cluster radius. Here we demonstrate our approach by obtaining 
this Stauffer relation. 

The upper critical dimension d ,  for percolation is 6 and in the MF approximation 
8 =$  and v = a  (see e.g. Stauffer et a1 1982). From (12) we find that in the MF 
approximation a = p = y = i. On substituting these results in (17) we find that m = 0 
and the usual hyperscaling relation dv = 2 -a is valid for percolation clusters. Noting 
that a = 3 - 8 we arrive at the following exponent relation for isotropic percolation 
(see footnote below equation ( 5 ) ) :  

e- i=dv.  (20) 

We have used (20) and the known values of 8 to determine Y in d = 2 to 6 and the 
results are given in table 1. Using the Flory approximation Y = 2/(d + 2) (Isaacson 
and Lubensky 1980), for percolation we find 6 = (3d + 2)/(d + 2). 

Table 1. Isotropic percolation cluster radius exponent Y determined from known values 
of 19 using (20). Other numerical estimates of Y are given in parentheses. 

d e v( = (e - l)/d) 

2 187191 = 2.054.. .a 48/91 = 0.527. . . 

3 2.1gd 0.40 

4 2.25d 0.31 

5 2.33d 0.27 

6 - - ~  5 2 - l e  126 f++e t ( exac t )  

(0.5 3 f 0.0 1 ', 0.52 i 0.02', 0. 50') 

(0.39~k0.02~, 0.40') 

(0.33') 

(0.286') 

i:+sls 1 
3 6  3 - 

4 

Using a conjecture of den Nijs (1979) and its extensions by Pearson (1980) and Nienhuis 

Gould and Holl (1981). 
Family and Reynolds (1981). 
Nakanishi and Stanley (1980). 

er a1 (1980). 

e Harris et a[ (1975), Priest and Lubensky (1976), Amit (1976). 
' Flory theory, U = 2/(d +2)  (Isaacson and Lubensky 1980). 
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5. Directed percolation 

The upper critical dimension for directed percolation is 5 and in the MF approximation 
t9 = 2 (Obukhov 1980), vll= and v L  = z (Redner and Yang 1982, Day and Lubensky 
1982), which implies that a = p = y = in the MF approximation (cf equation (12)). 
Using these results in (19) we find that m = 0 and therefore the hyperscaling relation 
for directed percolation is modified to 2 -a  = vi1 + vi(d - 1). Since, from (12), 2 -a  = 
8 - 1, we find that for directed percolation 

121) 

Exponent 0 has only been calculated directly in d = 2 (Dhar and Barma 1981), and 
the exponents vi1 and vL are only known in Flory theory (Redner and Coniglio 1982, 
Lubensky and Vannimenus 1982). However, in d = 3 (Blease 1977a, b, c) and in 
d = 5 - E  (Obukhov 1980) yp and pp have been calculated by series expansions and 
E expansions respectively. Using the scaling relation (Dhar and Barma 1981) 8 = 
(3pp+ 2yp)/(pp+ yp) we have determined 8 in d = 3 and 5 - E and the results are 
given in table 2. The percolation exponent vi, which agrees with the usual definition 
of 611, has been determined by Cardy and Sugar (1980) to first order in E = 5 - d ; 

(22) 

1 

e - 1 = vll + (d - i ) v l .  

1 v i =  1+E&. 

Table 2. Directed percolation cluster number exponent fl determined from (21) using 
values of vi1 and v I  given below. Other estimates of fl are given in parentheses. 

2 0.6875" 0.4375" 2.125 

3 0.60" 0.35" 2.30 

4 0.542" 0.292" 2.418 

(2.1 12 i O . O O S h )  

(2.28i0.02') 

1 + l e d  + + L  32F  d $- & 
5 

5 - F  2 24 

3 5  I 4 

a Flory theory, VI, = (d t 9)/(4d + 8j, v = 7/(4d + 8) (Redner and Coniglio 1982. Lubensky 
and Vannimenus 1982). 

Dhar and Barma (1981). 
Blease (1977a, b, c). 
vi,= vlIP/(pp+yp) and Y, = vy/(&+yp) where v i  is given in Cardy and Sugar (1980), pp 

and yp are given in Obukhov (1980) and v y  = (2pp+ yp- v l ) / ( d  - 1). 

Using (22) and the &-expansion results of Obukhov (1980) for pp and yp in 2-a,= 
yp + 20, = v i +  (d - l)vy(Klein and Kinzel 1981) we find 

(23) 

The &-expansion results for pp and yp and yp (Obukhov 1980) together with (22) and 
(23) may be used to obtain vll= vi/(pp+yp) and v L =  v?/(pp+yp) to first order in 
E = 5 - d. The results are 

(24) 

vy=$+%&. 1 

1 1  1 1  
vlI=T+Z;TE V I  = Z + Z & .  
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Once (24) is substituted in the right-hand side of (21), with d = 5 - E ,  the result agrees 
exactly with the &-expansion result for 8 - 1. 

Using the Flory theory (Redner and Coniglio 1982, Lubensky and Vannimenus 
1982) results v,,=(d+9)/(4d+8) and vL=7/(4d+8) in (21) we find 8 = 
(6d + 5) / (2d  + 4). The numerical values of 8 in d = 2 to 5 are given in table 2 and 
are found to be in excellent agreement with numerical estimates of 8, where available. 
It would be very useful to obtain 8 directly in d = 3 and 4 in order to test the Flory 
theory and relation (21). 

6. Lattice animals 

Parisi and Sourlas (1981) have used the connection between lattice animals and the 
Lee-Yang edge singularity problem to obtain a relation between v and 8, and to 
evaluate 8 in both d = 2 and 3. Here we show that the Parisi-Sourlas relation can 
be obtained directly without reference to the Lee-Yang problem. 

In the MF theory 8 =$ (see e.g. Stauffer et a1 1982). Using this result in (12) we 
find a = p = y = f in the MF approximation for isotropic lattice animals. The upper 
critical dimension for lattice animals is 8 and the MF value of Y is a (Lubensky and 
Isaacson 1979, de Gennes 1980). Once these results are substituted in (19), they give 
m = -2, implying the following modified form of hyperscaling relation for isotropic 
lattice animals: 

2 - a  = v(d-2). (25) 

Since 2 -a = 8 - 1 (cf e.g. (12)), this gives 

6 - 1 = v(d  - 2). (26) 

The exponent 8 has been determined numerically up to d = 8 using series 
expansions (see Gaunt (1980) and references therein). We have used these results to 
determine v in d = 3 to 8 and the results are given in table 3. Note that (26) cannot 
be used in d = 2 to determine v because 8 = 1, and therefore for completeness we 
have quoted the values of Y obtained from renormalisation group calculations for 
bond animals (Family 1980) and for site animals (Family 1982, Derrida and DeSeze 
1982) in d = 2. 

7. Directed animals 

It has recently been shown by Redner and Yang (1982) and Day and Lubensky (1982) 
that for directed animals d ,  = 7 and in MF theory 8 = 5, = z and vL =a. In addition, 
Day and Lubensky (1982) have chosen a definition of ‘susceptibility’ for directed 
animals in which 

1 1 

y = 2 - 9  (27) 

instead of (12). This choice is useful (Day and Lubensky 1982) because it leads to 
the usual MF value of y = t ;  otherwise it would be 5. Since K still plays the role of 
both a temperature and a field variable, one has (Y = y, which implies that for directed 
animals in MF theory a = t. Using these MF values at d ,  = 7 in (19) we find that 
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Table 3. Lattice animal cluster radius exponent v determined from (26) and values of 0 
listed below. Other estimates of U are given in parentheses. 

2 

3 8 - E  
8 

1" (exact) - 
(0.637b, 0.647 i 0.02', 
0.6408* 0.0003d) 

5" (exact) f (exacta) 
(5') 

1.9' 0.45 
(0.42') 

(0.36') 

(0.31') 

(0.28') 

2.2' 0.4 

2.3' 0.325 

2.4' 0.28 

&hE8 $+&,E (exact') 
5 1 
2 4 

a Parisi and Sourlas (1981). 
Family (1980). 

'Family (1982). 
dDerrida and DeSeze (1982). 
e Gaunt (1980). (An error of at least * O . l  should be associated with the values listed above.) 
Flory theory, Y = 5/(2d +4)  (Isaacson and Lubensky 1980, Daoud and Joanny 1981). 
Lubensky and Isaacson (1979). 

m = -1, and hyperscaling is modified to 

2-a  = v,(d-l) (28) 

so that v I  is related to a in the usual way. Furthermore, substituting a = 2 - 8 in (28) 
we find that for directed animals 

8 = v,(d - 1). 

Recently Dhar et a1 (1982) have conjectured that 8 = 3 in d = 2. Using this value 
in (29) we find v i  = in d = 2, in agreement with the bond directed animal series 
result of Redner and Yang (1982), and the conjecture of Day and Lubensky (1982) 
that the directed animal exponents may correspond to those of isotropic animals in 
d + l .  

In d = 3 to 7 we have used the flory results for v, (Redner and Coniglio 1982, 
Lubensky and Vannimenus 1982) to obtain 8 = 9(d - 1)/(4d + 8) and the results are 
given in table 4. The series expansion results of Redner and Yang (1982) are also 
listed in table 4. Although the series expansion results of Redner and Yang (1982) 
are not highly accurate, they are consistent with the values obtained here. Relation 
(29) can also be shown to be exact in d = 7 - E dimensions by using the E -  expansion 
results for 8 and v L  (Day and Lubensky 1982). 

Day and Lubensky (1982) have conjectured that v I  and 8 for directed animals in 
d dimensions are possibly the same as v and 8 - 1  for isotropic animals in d + l  
dimensions. This conjecture can be readily tested numerically by comparing the values 
of 8 and v, in d dimensions in table 4 with the values of 8 - 1 and v in d + 1 dimensions 
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Table 4. Directed lattice animal exponent 6 as determined from (29) using values of v L  
listed below. Other estimates of 6 are given in parentheses. V I I  is only given for comparison; 
it has not yet been related to other exponents. 

2 0.800~0.001" 0.50*0.003a 0.50*0.003 

3 0.70' 0.45' 0.90 

4 0.625' 0.375' 1.125 

5 0.5714' 0.3214' 1.2856 

6 0.53125' 0.28125' 1.40625 

7--E I + l & d  2 24 :+&-Ed f - &-E (exactd) 

(ib, 0.53 i O.Ola)  

(0.94i00.02a) 

(1.20j~0.05~) 

(1.35i0.15a) 

(1.40 f 0.15') 

1 
2 4 2 a 7  

a Series expansions (Redner and Yang 1982). 

- - 

Dhar et a1 (1982) have conjectured that 6 = 1 is exact in d = 2. 
Flory theory, VI, = ( d  + 11)/(4d + 8), vL = 9/(4d + 8) (Redner and Coniglio 1982, 

Day and Lubensky (1982). 
Lubensky and Vannimenus 1982). 

in table 3. Clearly numerical evidence seems to support their conjecture. A more 
interesting connection is found from the form of equation (29). By letting vl + v, 
8 + 8 - 1 and d + d - 1 in (29) we find 8 -- 1 = v (d  - 2), which is exactly equivalent to 
relation (26) for isotropic lattice animals. 

A remaining problem in directed animals is to relate Y I I  to the other exponents. 
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Note added in proof. After this work was completed we learned of two recent works on directed lattice 
animals: Stanley er al have enumerated both site and bond directed lattice animals for arbitrary dimension 
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possible relation between the Lee-Yang problem and directed lattice animals and compare with the Flory 
approximation for 6 obtained here; John Cardy has shown that the directed animal problem in d dimensions 
is equivalent to the Lee-Yang problem in d - 1 dimensions and from this correspondence has also obtained 
relation (29). 

References 

Als-Nielsen J and Birgeneau R J 1977 Am.  J. Phys. 45 554 
Amit D J 1976 J. Phys. A: Math. Gen. 9 1441 



L592 Letter to the Editor 

Blease J 1977a I. Phys. C: Solid State Phys. 10 917 
- 1977b J. Phys. C: Solid State Phys. 10 925 
- 1977c J.  Phys. C: Solid State Phys. 10 3461 
Cardy J L and Sugar R L 1980 J. Phys. A: Math. Gen. 13 L423 
Daoud and Joanny 1981 J. Physique 42 1359 
Day A R and Lubensky T C 1982 J. Phys. A :  Math. Gen. 15 L285 
Derrida B and DeSeze L 1982 J. Physique 43 475 
Dhar D and Barma M 1981 J, Phys. C: Solid State Phys. 14 L1 
Dhar D, Phani M K and Barma M 1982 J. Phys. A :  Math. Gen. 15 L279 
Essam J W 1980 Rep. Prog. Phys. 43 833 
Essam J W and De’Bell K 1981 J. Phys. A :  Math. Gen. 14 L459 
Family F 1980 J. Phys. A :  Math. Gen. 13 L325 
-1982 Preprint 
Family F and Coniglio A 1980 J. Phys. A: Math. Gen. 13 L403 
Family F and Reynolds P J 1981 2. Phys. B 45 123 
Fisher M E and Essam J W 1961 J. Math. Phys. 2 609 
Gaunt D S, Sykes M F and Ruskin H 1976 J. Phys. A: Math. Gen. 9 1899 
Gaunt D S 1980 J. Phys. A: Math. Gen. 13 L97 
de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell UP1 
-1980 C. R. Acad. Sci., Paris 291 17 
Gould H and Holl K 1981 J. Phys. A :  Math. Gen. 14 L443 
Harris A B and Lubensky T C 1981 Phys. Rev. B 24 2656 
Harris A B, Lubensky T C, Holcomb W K and Dasgupta C 1975 Phys. Rev. Lett. 35 327 
Havlin S and Ben-Avraham D 1982 J.  Phys. A: Math. Gen. 15 L321 
Isaacson J and Lubensky T C 1980 J .  Physique Lett. 41 L469 
Kertksz J and Vicsek T 1980 J.  Phys. C: Solid State Phys. 13 L343 
Kinzel W and Yeomans J 1981 J. Phys. A: Math. Gen. 14 L163 
Klein W and Kinzel W 1981 J. Phys. A: Math. Gen. 14 L405 
Lubensky T C and Isaacson J 1979 Phys. Rev. A 20 2130 
Lubensky T C and Vannimenus J 1982 J. Physique Lett. 43 L377 
Nakanishi H and Stanley H E 1980 Phys. Rev. B 22 2466 
Nienhuis B, Riedel E K and Schick M 1980 J. Phys. A: Math. Gen. 13 L189 
den Nijs M P M 1979 J. Phys. A :  Math. Gen. 12 1857 
Obukhov S P 1980 Physica lOlA 145 
Parisi G and Sourlas N 1981 Phys. Rev. Lett. 46 871 
Pearson R B 1980 Phys. Rev. B 22 2579 
Priest R G and Lubensky T C 1976 Phys. Rev. B 13 4159 
Redner S and Coniglio A 1982 J. Phys. A :  Math. Gen. 15 L273 
Redner S and Reynolds P J 1981 J. Phys. A :  Math. Gen. 14 L55 
Redner S an$ Yang Z R 1982 J. Phys. A :  Math. Gen. 15 L177 
Reynolds P J 1980 unpublished 
Schlogl F 1972 Z. Phys. 253 147 
Stanley H E, Reynolds P J, Redner S and Family F 1982 in Real-Space Renormalization ed T Burkhardt 

Stauffer D 1979 Phys. Rep. 54 1 
Stauffer D, Coniglio A and Adam M 1982 Ado. Polym. Sci. 44 103 
Wu F Y and Stanley H E 1982 Phys. Rev. Lett. 48 775 

and J M J van Leeuwen (New York: Springer) p 169 


